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trois faces ~ une distance sup6rieure. Ces poly6dres, 
associ6s par deux, conduisent ~ une vaste cage de 14 
Se, dans laquelle sont pi6g6 deux In +. Darts les deux 
structures, les distances moyennes ( In+-Se)  sont 
comparables (3,3 ,~ pour In~aMolsSe19 et 3,4 ,~ pour 
In2Mo~sSe19). De mSme, nous retrouvons une grande 
agitation thermique (Beq ~ 3 A 2) fortement anisotrope 
(t~l = 0,22 A; 6,, = 0,10 ~). 

In2MolsSe~9 est la structure type d'une grande famille 
de compos6s M2Mo~sX~9 (M = K, Ba, In, TI, X = Se; 
M = K, Rb, Cs, X = S) qui sont conducteurs 
m6talliques et pr6sentent une transition supra- 
conductrice (T c = 3,3 K pour K2MoIsSIg). 

Rff~rences 

BARS, O., GUILLEVIC, J. & GRANDJEAN, D. (1973). J. Solid 
State Chem. 6, 48-57. 

CHEVREL, R., POTEL, M., SERGENT, M., DECROUX, M. & 
FISCHER, O. (1980). Mater. Res. Bull. Soumis. 

CHEVREL, R., SERGENT, M. & YVON. K. (1981). A para~tre. 
GERMAIN, G., MAIN, P. & WOOLESON, M. M. (1971). Acta 

Cryst. A27, 368-376. 
GRUTTNER, A., YVON, K., CHEVREL, R., POTEL, M., 

SERGENT, M. & SEEBER, B. (1979). Acta Cryst. B35, 
285-292. 

International Tables for X-ray Crystallography (1974). 
Tome IV. Birmingham: Kynoch Press. 

LE MAROUILLE, J. Y. (1972). Th6se 36 cycle, Rennes. 
MCCANDLISH, L. E., STOUT, G. H. & ANDREWS, L. C. 

(1975). Acta Cryst. A31,241-245. 
MOORE, F. H. (1963). Acta Cryst. 16, 1169-I 175. 
PREWlTT, C. T. (1966). SFLS-5. A Fortran IV Full-Matrix 

Crystallographic Least-Squares Program. Report ORNL- 
TM-305. Oak Ridge National Laboratory, Tennessee. 

VAND, V., EILAND. P. F. & PEPINSKY. R. (1957). Acta Cryst. 
10, 303-311. 

Acta Cryst. (1981). B37, 1010-1017 

The Structure and Polytypes of ~-CaSiO 3 (Pseudowollastonite) 

BY TAKAMITSU YAMANAKA AND HIROSHI MORI 

Mineralogical Institute, Faculty of  Science, University of  Tokyo, Hongo, Tokyo, Japan 

(Received 15 July 1980; accepted 22 October 1980) 

Abstract 

A single crystal of ct-CaSiO 3 (pseudowollastonite) was 
grown by using a flux of CaC12. In the grown samples, 
four-layer, six-layer and disordered stacking polytypes 
were found from X-ray photographs. The four-layer 
polytype was dominant. The structure of the four-layer 
type was analyzed and the crystal data were found to 
be: space group C1, Z = 24, a = 6.853 (3), b = 
11.895(5), c = 19.674(13)A,  t t =  90.12(3),  fl = 
90.55 (3), y = 90.00(3)° ;  R = 0.040 for 1935 
reflections. The structure is characterized by four 
layers, one of which is composed of ternary rings of 
three tetrahedra of Si30 9 and a seemingly octahedral 
layer. Thus the structure is similar to that of SrGeO 3, 
except that the latter is a six-layer type. The ternary 
rings are elongated in the stacking direction, while the 
octahedral layers are contracted in the same direction. 
Accordingly, Ca atoms are coordinated with eight O 
atoms instead of six. Space groups of possible 
polytypes of a-CaSiO a composed of ideal ternary rings 
and octahedral layers have been derived by stacking 
operators and the enumeration of the distinct poly- 
types has also been conducted by the multiplication of 
these operators. Four-layer polytypes occur in two 
distinct space groups and have only four structure 
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types including enantiomorphs. Six-layer polytypes 
have nine space groups and ten structure types ex- 
cluding enantiomorphic and congruent structures 
belonging to the space groups. 

Introduction 

a-CaSiO3, pseudowollastonite, one of the CaSiO a 
polymorphs, is commonly found in slags or cement 
materials. However, the structure of tt-CaSiO 3 has 
never been analyzed because it was difficult to prepare 
single crystals large enough for X-ray studies, while 
structures of the other polymorphs of CaSiO 3, triclinic 
fl-CaSiO 3 (wollastonite), monoclinic fl-CaSiO a (para- 
wollastonite) and high-pressure CaSiO a, have been 
studied by Ito (1950), Buerger & Prewitt (1961), and 
Trojer (1968, 1969). 

Jeffery & Heller (1953) carried out an X-ray study of 
the diffraction symmetry of a-CaSiO a. Hilmer (1963) 
and Dornberger-Schiff (1962) discussed the symmetry 
and the structure of a-CaSiO 3 by using the structurally 
analogous material SrGeO 3 in order to overcome 
difficulties encountered in the sample preparation. 

In the present study, the successful growth of a single 
crystal of a-CaSiO 3 enables us to discuss the structure 
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and polytypism together with the structure of SrGeO 3 
related thereto. 

Preparation of cz-CaSiO 3 

The stoichiometric composition of CaSiO 3 was pre- 
pared by mixing CaCO 3 and anhydrous SiO 2. These 
starting materials were heated at 1373 K for 48 h. The 
heated product was found, using an X-ray powder 
diffractometer, to be well crystallized fl-CaSiO 3. When 
again powdered, pelleted and heated at 1673 K for 3 d, 
the product was sintered and found to be transformed 
to ct-CaSiO 3. The sintered product was placed in an 
evacuated silica tube together with 10 mg of TIC14, a 
sintering accelerator, and heated at 1523 K for 4 d. The 
crystals of t~-CaSiO 3 grown were an aggregate of 
hexagonal platy crystals. The largest grain among the 
aggregate was 2 mm long and 0.3 mm thick. Single 
crystals of tt-CaSiO 3 were also prepared by using a flux 
of CaCI 2. Reagents CaCO 3 and anhydrous SiO2 
were weighed together with the flux to synthesize a 
stoichiometric compound of CaSiO 3. These mixed 
reagents were heated and gradually cooled from 1723 
to 1423K at the rate of 2 5 K  h -~. The largest 
hexagonal prismatic crystal grown was 5 mm in 
diameter and 1 mm thick. 

Chemical analyses by an electron microprobe 
analyzer of the grown crystals proved the stoichio- 
metric composition of CaSiO 3 and the absence of any 
impurities. 

X-ray precession photographs of several grown 
crystals elucidated the presence of polytype structures 
of ~t-CaSiO 3. A four-layer polytype was predominant in 
these polytypes, though, in a few cases only, we also 
found a six-layer type, a mixed structure of four- and 
six-layer polytypes and disordered structures. The 
six-layer polytype with pseudosymmetry C2/c is 
probably isostructural with SrGeO 3, described by 
Hilmer (1963) and Dornberger-Schiff (1962). The 
disordered structure was confirmed by diffuse streaks 
along the c* axis, and suggests the presence of many 
polytypes with different stacking periods along the c 
axis. 

Structure of the four-layer polytype of a-CaSiO 3 

With reference to the X-ray precession photographs of 
the four-layer structure of the dominant polytype, the 
diffraction patterns of even layers corresponding to l = 
2n were characterized by pseudohexagonal symmetry, 
while those of layers with l = 2n + 1 revealed simple 
pseudomirror symmetry. The systematic absence of hk! 
reflections, when h + k = 2n + 1, indicates that the 
structure of ~t-CaSiO 3 may be represented by a 
C-centered lattice. According to the diffraction sym- 
metry and to aid the discussion of the polytype 
structures, the C-centered triclinic structure, which has 

a pseudomonoclinic symmetry C2/c, is more ap- 
plicable than the primitive cell. 

The lattice parameters of the four-layer structure of 
a-CaSiO 3 are a = 6.853 (3), b = 11.895 (5), c = 
19.674(13)A,  a = 90.12(3),  fl = 90.55 (3), y = 
90.00 (3) ° . These were determined by the least-squares 
method using data obtained on a four-circle diffractom- 
eter. These parameters are similar to those reported 
by Jeffery & Heller (1953): a = 6.90, b = 11.78, c = 
19.65 A, (~ = y = 90, fl = 90.82 °. It is apparent that 
the space group of this sample is Ci  or C1 and that the 
unit cell is composed of 24 molecules (Z -- 24) of 
CaSiO 3. 

Further systematic absences of hO! reflections, when 
h = 2n + 1 and l = 2n + 1, indicate that the structure 
has pseudo c glide planes perpendicular to the b axis. 
Reflection intensities of indices having k = 3n in the 
even layers l = 2n are much higher than the rest, 
indicating the presence of the pseudo-orthorhombic 
subcell whose b axis has a length one third of the b axis 
of the true cell. 

Intensity data were collected up to a 20 limit of 55 ° 
on an automatic four-circle X-ray diffractometer 
(Syntex P21) with Mo Ktt radiation monochromatized 
by pyrolytic graphite. The 09--20 scanning was carried 
out at 1 ° (20) min-k Data for 1935 reflections having 
I > 2o(1) were used in the structure analysis. After 
correction for Lorentz and polarization factors, the 
intensities were reduced to structure factors. No correc- 
tion was made for absorption or secondary extinction. 
Structure determination was carried out by the direct 
method with the XRAY system (Stewart, Kruger, 
Ammon, Dickinson & Hall, 1972). Initially, a compari- 
son of calculated and observed statistical averages 
of normalized structure factors was made. Since the 
observed average values were very close to the theoreti- 
cal values of the centrosym_metric structure, the space 
group was taken to be C1. Secondly, determination 
of the phase signs was made using ~ 2 relations. From 
the E map drawn with the phase signs determined, 
several models for the arrangement of the Ca and Si 
atoms were derived. One, which satisfied the pseudo- 
symmetry of C2/c, was adopted for the most reason- 
able model in consideration of the diffraction symmetry 
of the X-ray photographs. The least-squares refinement 
based on the above model reduced the residual para- 
meter to R = 0.080. In three additional cycles, isotropic 
thermal parameters were varied and, thereafter, the R 
value decreased to 0.044. After anisotropic thermal 
parameters were varied in two more cycles, the R value 
converged to 0.040. The final atomic coordinates and 
isotropic thermal parameters are presented in Table 1.* 

* Lists of structure factors and anisotropic thermal parameters 
have been deposited with the British Library Lending Division as 
Supplementary Publication No. SUP 35859 (20 pp.). Copies may 
be obtained through The Executive Secretary, International Union 
of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England. 
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Interatomic distances are presented in Table 2. The 
program used in the least-squares refinement is the sub- 
program CR YLSQ in the XRAY system. 

The structure of the four-layer polytype ofa-CaSiO 3 
consists of four Ca-octahedra layers and ternary rings 
of three tetrahedra of Si309 interposed between the 
layers. Ca atoms in the unit cell occupy seven 
independent positions: two on inversion centers and 
five at general positions. These Ca octahedra in a layer 
are compressed in the e direction, while tetrahedra of 
the rings are elongated in the same direction. Thus 
distances between Ca and two bridging O atoms in the 
tetrahedra are short enough for Ca atoms to co- 
ordinate these O atoms. All Ca atoms have an eightfold 
coordination in the structure, though they seemingly 
occupy octahedral sites. The eight C a - O  bond 
distances in all Ca polyhedra are ~2 .54 /k  and they are 
much longer than those in the fl-CaSiO 3 (wollastonite) 
structure, whose mean value is 2 .39A.  This is a 
reasonable feature because a-CaSiO 3 is a higher- 
temperature polymorph of CaSiO 3. 

The octahedral layers are periodically bridged by the 
Si309 rings as shown in Fig. 1. The ternary rings are 
located above a void space of the trigonal pyramid 
defined by three octahedra, and these rings appear in 
every third void space in an octahedral layer. The void 

Table 1. Atomic positional parameters and isotropic 
temperature factors 

x y z G B (/k 2) 

Ca(I) 0.5000 (0) 0.5000 (0) 0.0000 (0) 0.5 0.86 
Ca(2) 0.5115 (2) 0.8357 (1) 0.0004 (5) 1.0 0.97 
Ca(3) 0.5002 (3) 0.4964 (1) 0.2501 (4) 1.0 0.96 
Ca(4) 0.5004 (3) 0.8436 (l) 0.2500 (4) 1.0 0.89 
Ca(5) 0.0006 (3) 0.6722 (2) 0.2500 (4) 1.0 1.02 
Ca(6) 0.5000 (0) 0.5000 (0) 0.5000 (0) 0.5 1.06 
Ca(7) 0.4886 (2) 0.8357 (3) 0.4995 (4) 1.0 0.82 
Si(1) 0.2066 (3) 0.5387 (1) 0.1249 (5) 1.0 0.63 
Si(2) 0.2021 (3) 0.7975 (2) 0.1222 (5) 1.0 0.77 
Si(3) 0.5926 (2) 0.6702 (1) 0.1278 (5) 1.0 0.66 
Si(4) 0.4068 (3) 0.6701 (2) 0.3720 (5) 1.0 0.74 
Si(5) 0.7933 (3) 0.5387 (1) 0.3749 (5) 1.0 0.66 
Si(6) 0.7983 (3) 0.7972 (2) 0.3778 (5) 1.0 0.72 
O(I) 0.1584(7) 0.4853(5) 0.0523(15) 1.0 1.16 
0(2) 0.1533 (8) 0.8448 (5) 0.0479 (14) 1.0 1.10 
0(3) 0.7001 (7) 0.6704 (4) 0.0562 (16) 1.0 1.29 
0(4) 0.1554(8) 0.4869(5) 0.1968(15) 1.0 1.11 
0(5) 0.1451 (8) 0.8505 (4) 0.1927 (17) 1.0 1.46 
0(6) 0.6907 (9) 0.6712 (5) 0.2016 (17) 1.0 1.40 
0(7) 0.3094(8) 0.6712(5) 0.2981(16) 1.0 1.14 
0(8) 0.8435 (8) 0.4873 (4) 0.3030 (15) 1.0 1.06 
0(9) 0.8544 (8) 0.8494 (4) 0.3067 (16) 1.0 1.27 
O(10) 0.3002 (7) 0.6708 (5) 0.4420 (16) 1.0 1.41 
O(11) 0.8426 (7) 0.4855 (4) 0.4460 (17) 1.0 1.42 
O(12) 0.8478 (8) 0.8458 (4) 0.4512 (16) 1.0 1.46 
O(13) 0.1117 (7) 0.6669 (4) 0.1235 (14) 1.0 0.80 
O(14) 0.4480(7) 0.5584(4) 0.1261 (14) 1.0 1.04 
O(15) 0.4428 (7) 0.7797 (4) 0.1254 (14) 1.0 0.95 
O(16) 0.5538 (7) 0.5580 (4) 0.3741 (14) 1.0 0.91 
O(17) 0.5566 (6) 0.7803 (4) 0.3748 (14) 1.0 1.09 
O(18) 0.8898 (7) 0.6676 (4) 0.3757 (14) 1.0 0.99 

space connected to a Si309 ring is expanded more than 
the remaining void spaces, and thereby the octahedra in 
a layer are deformed, as can easily be seen in Fig. 1. 

For each tetrahedron, two O atoms, other than the 
bridging O atoms, link the upper and lower octahedral 
layers. The S i - O  distances involving the former O 
atoms are longer than those involving the latter (Table 
2), and the O - O  distance between the former O atoms, 
whose average value in three tetrahedra is 2.84 A, is 
much longer than the other edge distances of the 

Table 

Ca(l)-O(1) 
O(I') 
0(2) 
0(29 
0(3) 
O(3') 
O(14) 
O(14') 

Average 

Ca(2)-O(1) 
o(1') 
0(2) 
0(2') 
0(3) 
0(3') 
O(13) 
o(15) 

Average 

Ca(3)-O(4) 
o(5) 
0(6) 
0(7) 
0(8) 
0(9) 
O(14) 
O(16) 

Average 

Ca(4)-O(4) 
o(s) 
o(6) 
0(7) 
0(8) 
0(9) 
o(15) 
o(17) 

Average 

Si(1)-O(l) 
0(4) 
o(13) 
O(14) 

Average 
Si(2)-O(2) 

o(5) 
O(13) 
O(15) 

Average 

Si(3)-O(3) 
0(6) 
O(14) 
o(15) 

Average 

2. Interatomic distances (rio 

2.571 (7) Ca(5)-O(4) 2.666 (7) 
0(5) 2.609 (7) 

2.320 (6) 0(6) 2.312 (7) 
0(7) 2.312 (7) 

2.679 (7) 0(8) 2.667 (7) 
0(9) 2.588 (7) 

2.603 (6) O(13) 2.612 (7) 
O(18) 2.595 (7) 

2.543 Average 2.545 

2.278 (7) Ca(6)-O(10) 2.701 (7) 
2.636 (7) O(10') 
2.638 (7) O(11) 2.594 (7) 
2.601 (6) O(11') 
2.590(7) O(12) 2.311 (7) 
2.281 (7) O(12') 
2.573 (6) O(16) 2.600 (6) 
2.600 (6) O(16') 
2.525 Average 2.551 

2.573 (7) Ca(7)-O(10) 2.599 (7) 
2.302 (7) O(10') 2.302 (7) 
2.637 (7) O(11) 2.295 (6) 
2.628 (7) O(11') 2.639 (7) 
2-567 (7) O(12) 2.654 (6) 
2.308 (7) O(12') 2.614 (7) 
2.570 (7) O(17) 2.584 (7) 
2.570 (7) O(18) 2.582 (7) 
2.519 Average 2.535 

2.271 (7) 
2.674 (7) 
2.619 (7) 
2.618 (7) 
2-272 (7) 
2.659 (7) 
2.591 (7) 
2.595 (7) 
2.537 

1.596 (7) Si(4)-O(7) 1.593 (7) 
1.590 (7) O(10) 1.565 (7) 
1.658 (6) O(16) 1.669 (6) 
1.670 (6) O(17) 1.666 (6) 
1.629 Average 1.623 

1.600 (7) Si(5)-O(8) 1.585 (7) 
1.574 (7) O(11) 1.571 (7) 
1.671 (6) O(16) 1.659 (6) 
1.662 (6) O(18) 1.669 (6) 
1.627 Average 1.621 

1.598 (7) Si(6)-O(9) 1.586 (7) 
1.598 (7) O(12) 1.588 (7) 
1.659 (6) O(17) 1.668 (6) 
1.659 (6) O(18) 1.662 (6) 
1.629 Average 1.626 
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tetrahedra, whose mean values are about 2.60 A. This 
feature indicates that the tetrahedron seems to undergo 
a tensile force in the direction of the c axis. The ternary 
rings of Si309 are deformed from an ideal ternary ring 
having symmetry 62m. 

The following structures reported to date have 
ternary rings of Si309 or Ge30 9" K2ZrSiaO 9 (wadeite) 
(Henshaw, 1955), Ca3Si309 (high-pressure wollas- 
tonite) (Trojer, 1969), Ca2BaSi309 (Glasser & Dent 
Glasser, 1961), Sr3Ge309 (Hilmer, 1963) and the 
benitoite-type structures, BaTiSi309 (Fisher, 1969), 

f l rs t  l aye r  
lhird layer 

b second layer  
Base layer 

Fig. 1. Projection of the four-layer type of (~-CaSiO 3 (pseudo- 
wollastonite). The atoms Ca(l) and Ca(6) are at the inversion 
center. 

VAV VAV 

b 

13 

a-CaSi0 3 

a 
i 

A 

SrGeO 3 

Fig. 2. Structure differences between a-CaSiO 3 and SrGeO 3. The 
schematic projections along the a and c axes reveal the difference 
in their stacking sequences. The numerals indicate the ordering 
number of the layers from the base layer and the triangles 
represent the bridging O atoms of the ternary rings in the 
projection along the c axis. 

BaSnGe309 (Choisnet, Deschanvres & Raveau, 1972) 
and Bi2Ge309 (Grabmaier, Hauss/ihl & Kliifers, 1979). 
The ternary rings in the structure of (~-CaSiO a have 
similar features to those in the above structures, except 
for the benitoite-type structures and high-pressure 
wollastonite. 

As inferred by Hilmer (1963) and Dornberger-Schiff 
(1962), SrGeO 3 is isostructural with a-CaSiO 3 in the 
sense that both are layer structures having ternary rings. 
The former is, however, a six-layer structure, while the 
latter is predominantly a four-layer type that was newly 
analyzed. Further, the relative positions of the rings in 
these structures are quite different, as shown in Fig. 2. 

Several possible arrangements of the ternary rings 
relative to the octahedral layers may give rise to other 
structure types of (~-CaSiO 3. In fact, besides the 
four-layer polytype, the presence of such other poly- 
types as six-layer and stacking-disordered polytypes 
was proved by the X-ray precession photographs, 
though they were rarely found. 

Polytypes of ~-CaSiO 3 

In the present study four-layer, six-layer and dis- 
ordered-layer polytypes have been found in a-CaSiO 3. 
The structure of the four-layer polytype is now found to 
have space group Ci  and it is also confirmed that this 
structure was formed by the deformation of an ideal 
structure having space group C2/c. The structure of 
(t-CaSiO 3, similarly to SrGeO 3, consists of alternate 
identical layers. A unit of them is composed of an 
octahedral layer and ternary rings of Si309. In the unit 
structure, octahedra are markedly contracted in the e 
direction, parallel to the stacking direction, while 
tetrahedra in the rings are elongated in the same 
direction. If the octahedra and ternary rings could 
preserve symmetries of 3 and 3/m, respectively, all 
layers would be geometrically equivalent to each other. 
The periodic stacking sequence of these layers brings 
about the polytypic structures. The ideal unit structure 
(Fig. 3) has a symmetry of P(~m2 or mP3m2 in the 
diperiodic groups proposed by Niggli (1959). 

Certain restrictions are imposed on the relative 
positions of the neighboring layers, because the ternary 
rings bridge the octahedral layers which are related by 
mirror symmetry. These positional relations between 
layers can be expressed by the rotation of the base 

Fig. 3. Arrangement of the ternary tetrahedral rings on the 
octahedral layer. The ternary rings are located at the void spaces 
defined by three octahedra. The unit-layer structure has a 
symmetry of the diperiodic group mP3m2. 
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layer. The rotation axis is located at the octahedral 
cations. The odd-numbered layers take positions 
rotated by the angle (2n + 1)re/3 relative to the base 
layer, and the even-numbered layers take the positions 
rotated by 2nz#3 .  The positions of the upper layers 
relative to the base layer are given by: 

(coi0 sin0 i)(i) (°o) 
= si 0 cos O + , 

Z 0 base j / N  

where 0 = a j u / 3 ,  aj is an integer defining the j th layer, 
and N is the number of stacking layers. The periodic 
repetition of the stacking layers requires N to be an 
even number. Since aj indicates the rotated positions 
of the j th layer, l ayl can be a number smaller than 6. 
A polytype, which is represented by the polytype 
symbol A, can be expressed by a numerical row such as 

A = ( a o a l a 2 . . . a j . . . a N _ l )  lajI <6.  

If the stacking mode is referred to in terms of a j,  
several restrictions are imposed by the symmetry of the 
unit-layer structure and the linkage of the layers; for 
example, a2n is restricted to a2n = 0, 2, 4 and a2,_ 1 to 
a2,_ ~ = 1, 3, 5. Since the unit layer has a threefold 
rotation symmetry, when polytypes of A and A' have a 

' these relation such as a'2,,_ ~ = a2 n_ 1 -+ 2 with a2n = a2n , 
polytype structures are congruent to each other. Then a 
polytype A represents the following three congruent 
polytypes" 

( a  o a 1 a 2 . . .  aj aj+ 1 " " " a N -  1) 

= (a 0a I + 2a2 . . .  aj + 2 a j + l . . .  a N - t  + 2) 

= (a o + 2a~ a 2 + 2 . . .  a j a i ÷  ~ + 2 . . .  aN_l) .  (1) 

Since polytype structures have cyclic stacking 
sequences, polytype A', derived from the shifting of the 
position of the base layer by q layers in polytype A, has 
the relation aj = aj+q and is congruent to A. The 
following equation is then derived" 

( a  o a I a 2  . . . a j  . . . a N _  1) 
= ( a q a q + , a q + 2 . . . a q + j . . . a o a l . . . a q _ , ) ,  (2) 

and all the stacking modes {aj} derived from the 
permutation of N layers include N equivalent modes. 

In addition to the above relations (1) and (2), the 
relative positions of the stacking layers have several 
other systematic relations derived from stacking 
operations. The following stacking operations can be 
given in the stacking sequences" mirror operation 
represented by operator a perpendicular to the stacking 
direction, twofold rotation at the intralayer position by 
(0 and at the interlayer position by 2, and inversion by 
operator r. These operators are expressed by the 
following relations according to (1) and (2): 

oA = ( a N _  1 a N _  2 . . .  a j  . . . a 2 a I ao) 

¢pA = ( - a  N _  1 - a N - 2  • • • - a j  . . . - a  2 - al  - a o) 

2A = ( - a  N _~ +_ 3 - aN_2 + 3 . . . - a j  + 3 . . . - a 2  +_ 3 

- a l  + 3 - a  0 + 3) 

rA = (a N _~ + 3a N_2 + 3 . . . aj + 3 . . . a 2 + 3a~ + 3a o 
+3).  

When the stacking operations introduced by these 
operators are located on or in the N / 2  layer, polytype 
A' is represented by 

A "  = {A,  aA } = {aj } ( j =  
with 

A ' =  {A,~0A}= {aj} ( j =  
with 

A'a = {A,  L4  } = {a j}  

A ' =  {A, rA} = {aj} 

0, N -  1) 
a'j - a ' u _ j -  0 (mod 6) 

0, N -  l) 
t t 

aj + aN_ j --  0 (mod 6) 

( j =  0, N -  l) 
with a'j + a ' u _ j -  3 (mod 6) 

( j =  0, N -  1) 
with a~ - a~v-i- 3 (rood 6). 

When these operations are on or in the N / 4  and 
3 N / 4  layers, where N = 4n, and on or in the (N - 2)/4 
and 3 ( N -  2)/4 layers, where N = 4n + 2, polytype A" 
is represented by" 

A " = ~ { A ,  oA}={a~'} ( j = 0 ,  N -  1) 
with a'/ - a~/2_j - 0 (mod 6) 

A " = ~ { A , ~ o A } = { a ~ ' }  ( j = 0 ,  N -  1) 
" " - 0 ( m o d  6) with a j  + a N / 2 _ j  = 

A ' a ' = ~ { A ,  L 4 } = { a j ' }  ( j = 0 ,  N -  1) 
t !  ~ ¢ t  _ _  with aj + N/2-j = 3 (mod 6) 

A " = ~ { A ,  rA}={aj '}  ( j = 0 ,  N -  1) 
with aj'  - a ~ n _ j  = 3 (mod 6) 

where operator ~ indicates a shift of the base layer to 
the N / 4  layer. 

Many stacking modes of the polytypes can be 
derived from more than two stacking operations, 
because multiplications of the above four operators are 
possibly generated. If these operators are simulta- 
neously imposed on or in the same position, all a i in the 
{ a  j }  a r e  either aj = 0 or aj = 3 with any j. If the 
conditions a2, = 0, 2, 4, and a~,_ 1 = 1, 3, 5 are 
considered, these operations generate only two-layer 
polytypes. Stacking modes, except in the two-layer 
models, may be given by the multiplications of 
operators which are imposed on or in the different layer 
positions; for example, N / 4  and N / 2 .  

Multiplications of two operators, such as a¢, a2, at, 
~02, ¢r and 2r can be derived. Those of any three 
operators naturally produce the fourth operator and, 
therefore, multiplications of all four operators, such as 
a¢Ar, are present, but those of any three are not present. 

A* and A IT, derived from the multiplications of o¢ O O  

and At, respectively, give the stacking modes of 
polytypes with N = 4n, because 

AL= {A, ~rAI n ¢{A, cA/ 
= {A, cA } N ~{A, aA } = {a'f }, 
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and, in addition to each constraint in {a~'} introduced 
by the independent operator of a and ~0, {a*} has the 
further constraint 

and 

* = 0 ( m o d  6) ,  a*_j + aN/2_ j 

A]T= {A, L4} N ~{A, rA} 
= {A, rA / n ~IA, XA / = {a* }, 

with the further constraint 

* = 0 ( m o d  6).  a~,_j- aN/2_ j 

The other multiplications of the operators, such as 
a2, or, ~02 and ~0r, give the modes of polytypes with N = 
4n - 2 and {a*} has an additional constraint, as 
follows: 

Ao*a= {A, aA} n ~{a, Zd } = {A, 2A } N ~{A, aA} = {a 7 } 
* - 3 ( m o d  6)  with a*_j + aN~ 2_j = 

A * =  {A, aA} n ~{A, rA} = {A, rAiN ~{A, ~rA} = {a 7 } 
with a* - * - N-j aN~E_ ~ = 3 (mod 6) 

A**=/A, ¢ a / n  ~/A, ~A } = {A,~}  n ~{A, ¢A} = {a*/ 
with a*_~ * - aN/z_y = 3 ( m o d  6) 

A * , =  {A,(oA} n ~{A, rA}= {A, rA}n ¢{A, cA}=  {a~'} 
with a*_j + a*/2_j--- 3 (mod 6). 

Symmetries of the polytype structures are defined by 
the combination of these stacking operations and the 
symmetry of the unit-layer structure which has sym- 
metry P6m2. 

The enumeration of each distinct polytype is also 
derived from the combination. Numbers of possible 
stacking modes symbolized by Q of the N-layer 
polytypes are represented by the permutation of layers 
given by Q = 3I-IN • However, the relations introduced 
by equations (1) and (2) reduce Q to Q = 3I-IN_2 . Since 
N-layer polytypes include polytypes of subfamilies 
composed of K, L, M . . . .  -layer polytypes, where K, L, 
M, . . .  are divisors of N, the number of distinct 
polytypes of QN is given by 

aN= Q -  ( Ox + at. + o n  + • • .) 
= 3I-IN_2 --  (3I-IK_2 + 3I-IL_2 + 3I-IM_2 + "  ' "). (3) 

QN, thus obtained, is composed of the summation of 
the number of distinct polytypes, including their 
enantiomorphs. A detailed discussion of the deri- 
vations of the symmetries and enumerations of the 
distinct polytypes from the stacking operations in 
arbitrary-number layer polytypes will be reported later. 
The results obtained from the derivations in the only 
two-, four- and six-layer polytypes are presented below. 

(a) Two-layer polytypes 

Though neighboring layers in the two-layer struc- 
tures can take three possible different positions, A = 
(0 1), (0 3) or (0 5), they are all congruent to each other 

Ccmm (ocp2r) 

Fig. 4. Projection of the two-layer polytype along the stacking 
direction. The symbols in parentheses indicate the stacking 
operators, driving this polytype structure. 

due to equation (1). Therefore, two-layer structures are 
essentially one type and this is also proved by equation 
(3) as Q2 = 3110 = 1. As previously described, two-layer 
polytypes are generated by multiplications of all four 
operators, ox02r. The space group of the polytypes is 
then Cemm, as shown in Fig. 4. 

(b) Four-layer polytypes 

In the four-layer polytypes eight types are given by 
equation (3) as Q4 = Q - Q2 = 3172 - 3170 • Some of 
them are, however, regarded as enantiomorphic or 
congruent structures. Only two distinct polytypes 
having space group C2em or C2/e are given by the 
stacking operations therein. 

Structures derived from the operation of 2r have 
space group C2/e. They are expressed by the following 
four stacking modes: A 1 = (0 1 2 3), A2 = (0 1 2 5), 
A 3 = ( 0 1 4 3 )  a n d A 4 = ( 0 1 4 5 ) . E a c h p a i r o f A ~ a n d  
A 4 and A 2 and A 3 is in an enantiomorphic relation and 
the first pair is congruent with the last, according to 
equations (1) and (2). Then A ~ is an enantiomorph of 
A 4 and congruent with A 2 which is an enantiomorph of 
A 3 . 

Four-layer polytypes given by the multiplication of 
the operators, such as o~0, introduce structures having 
space group C2em. Four polytypes, A 5 = (0 1 0 3), 
A 6 =  (0 1 0 5),A 7=  (0 1 2 1 )andAS= (0 1 4 1),belong 

~L/A b~wA 
X 

C2cm (o20 

Ai,~t A l,~,IA 

C2/c (lit) 

,~ --.. ~, ,~ : /~, ~ ~:,/~ 

Fig. 5. Four-layer polytypes and their enantiomorphs. 
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Table 3. Numbers of polytypes and their space groups 

Family a~02r 

Number of layer (N) 2 
Space group Ccmm 

Distinct type ( Pd) 1 
Enantiomorphs ( Pe) 1 
Congruent type (Pc) 1 
Pc × Pe 1 

Total number (Q) 1 

0¢ 2r a2 or ¢2 cr  o 0 2 r Z 

4 4 6 6 6 6 6 6 6 6 6 
C2cm C2/c C2cm C 2 J m  P6~22 C2/c Cm C2 C2 PI P1 

P6522 
1 1 1 1 1 1 1 1 1 1 2 
2 2 2 2 2 1 2 2 2 2 4 
2 2 3 3 1 2 6 2 6 6 6 
4 4 6 6 2 2 12 4 12 12 24 

8 80 

to the above structures. The first two are in an enantio- 
morphic relation and they are congruent with the last 
two. Then only two are distinct polytypes, one is C2/c 
and the other C2cm. They are presented in Fig. 5. 

(c) Six-layer polytypes 

In the six-layer polytypes, according to equation (3), 
Q6 = Q - Q2 = all4 - 3FIo, 80 types can be produced. 
10 distinct polytypes are found which belong to the 
structures having the nine space groups P6122, P6522, 
C2cm, C2~/m, C2/c, Cm, C2, P1 and PI. 

When six layers have the stacking operations defined 
by the operator of ¢2, these layers take continuously 
rotated positions of 7t/3 or -7t/3 relative to the base 
layer. Their polytypes are expressed by A = (0 1 2 3 4 5) 
or A = ( 0 5 4 3 2 1 ) ,  which is congruent to A = 
(0 1 4 5 2 3). They are P6122 and P6522, respectively, 
and are enantiomorphic structures. 

When the six-layer polytypes are derived from the 
stacking operations of the multiplication of Cr, the six 
layers are alternately rotated by 27t/3 and -27r/3 in the 
even and odd layers, such as A = (0 1 2 5 4 3) or A --- 
(0 1 4 3 2 5). These structures inherently have the 
symmetry of a c glide plane and, therefore, their space 
group is C2/c. In the six-layer polytypes, only two 
types belong to the structure. Since they are, however, 

P6~22 (q~,l) C2/c (q~-c) 

A A A  A 

C2cm (oq~) C2Jm (or) 

Fig. 6. Several examples of the six-layer polytypes. 

enantiomorphs of each other, the distinct polytype 
having the symmetry is only one type. 

When the six-layer polytypes are constructed by the 
stacking operations of a2 or at, their structures have 
space group C2cm or C21/m. Each gives only one 
distinct polytype which has two enantiomorphic poly- 
types. 

When only one of the operators, a, ¢, 2 and r, 
independently constitutes the stacking sequences of the 
six layers, the structures have the space groups Cm, 
C2, C2 and Pi,  respectively. Only one distinct polytype 
belongs to each structure and forms two enantio- 
morphs. 

Finally six layers having no special stacking 
operations are of space group P1. Two distinct 
polytypes, each of which gives four enantiomorphs, 
belong to the structure. Several distinct potytypes 
having different space-group symmetries in the six- 
layer polytypes are presented in Fig. 6. 

(d) Enumeration of the distinct polytypes 

Enumeration of distinct polytypes of the two-, four- 
and six-layer polytypes is subjected to the com- 
binations of the stacking operations. These polytypes 
are classified into several families in terms of the 
stacking operations. The numbers of distinct polytypes 
in the families are presented in Table 3. Numbers of 
distinct (Pd), enantiomorphic (Pc) and congruent 
polytypes (Pc) have also been confirmed by the 
computer analysis concerning all permutations of 
layers. 

In the four-layer polytype structure presently 
analyzed, deformations due to the contraction of the 
octahedral layers and the elongation of the ternary 
rings may have been caused by the cooling process in 
the sample preparation of a-CaSiO 3. The sample may 
essentially have an ideal polytype structure of C2/c in 
the structurally stable region at temperatures higher 
than 1373 K. We shall soon test the assumption by 
using a high-temperature apparatus for single-crystal 
X-ray diffraction studies (Yamanaka, Tak6uchi & 
Sadanaga, 1980). 

The authors wish to express their sincere gratitude to 
Professors R. Sadanaga, Y. Tak6uchi and H. Takeda of 
the University of Tokyo for their fruitful discussions 
throughout this investigation. 
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Abstract 

Single-crystal X-ray data for the fast ionic conductor 
Ag3IS were measured in the temperature range 135- 
295 K. Structure refinement was carried out for the 
cubic room-temperature (fl) phase in space group 
Pm3m with three Ag ÷ ions distributed among twelve 
(I,S) tetrahedra. The final refinement JR(w) = 0.041 for 
49 reflections] resulted in very anisotropic temperature 
factors for Ag (r.m.s. displacement 0 .19-0.39 A). An 
alternative structure model with Ag on octahedral sites 
and anharmonic temperature factors up to the sixth 
order resulted in R(w) = 0.042. At the transition to the 
y phase (155 K) the reflection symmetry did not 
change; the intensities of only a few reflections 
increased considerably (a maximum of more than 100 
times). The single-crystal features were not destroyed 
by cycling between the fl and y phases. It could be 
shown definitely by Patterson synthesis that in the y 
phase the crystal was composed of 16 differently 
oriented domains with completely occupied Ag sites. 
The domains scattered incoherently. The space group 
of each domain is R3. A special program was written to 
calculate a least-squares refinement for the super- 
imposed intensities of this 16-domain crystal. The 
weighted R value for the intensities was R w(I) = 0.16 

0567-7408/81/051017-07501.00 

for 55 independent reflections. Additional weak reflec- 
tions were found in the fl and the ), phases, indicating 
that small domains of monoclinic a-Ag2S were included 
in the crystal. 

I. Introduction 

Silver iodide sulfide is a fast ionic conductor with a 
close structural relationship to the archetype super- 
ionic conductor a-AgI. The major difference is the 
much higher density of mobile ions: the cubic unit cell 
with a = 4.987 A contains 3Ag + in Ag3IS compared to 
a = 5.05 A and 2Ag + in a-AgI. As a consequence, 
both the structural and the dynamic properties of 
Ag3IS are expected to be much more affected by the 
repulsive interaction between the Ag ÷ ions than is the 
case for a-AgI. 

All presently known structural data on Ag3IS have 
been derived from powder investigations, but they 
already evidence the considerable structural richness of 
this compound. 

Reuter & Hardel (1961) reported the existence of a 
room-temperature (fl) phase and a high-temperature 
(a) phase with the fl- ,a transition at 508 K. They 
measured an ionic conductivity of 0.001 f~-~ mm -1 at 
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